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Te multiobjective (MO) optimizers show great promise in solving constrained engineering structural problems.Tis paper introduces
a MO version of the Brown Bear Optimization (BBO) algorithm, inspired by the foraging behavior of brown bears. Te proposed
Multiobjective Brown Bear Optimization (MOBBO) algorithm is applied to fve structural optimization problems, including 10-bar,
25-bar, 60-bar, 72-bar, and 942-bar trusses, aiming tominimize bothmass andmaximumnodal defection simultaneously. Comparative
evaluations against six benchmark algorithms demonstrate MOBBO’s superior convergence, solution diversity, and efectiveness in
addressing highly constrained problems. Te hypervolume (HV) and inverted generational distance (IGD) metrics place MOBBO in
frst rank according to the Friedman test, with an average standard deviation of 0.0002. Moreover, the spacing-to-extent (STE) and
generational distance (GD) metrics rank MOBBO second. Te fnal Friedman rank test highlights MOBBO’s overall dominance,
achieving a frst rank. Best Pareto plots, diversity graphs, and box plot analyses further suggest MOBBO’s superior performance and
convergence compared to existing algorithms.Terefore, the MOBBO algorithm can be efectively applied to various MO optimization
tasks in industry, ofering refned global optimization solutions and contributing valuable insights to the feld of MO algorithms.
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1. Introduction

Classical optimization techniques have been used by re-
searchers and industries for many years to solve real-world
challenges and optimize critical design issues. Tese tech-
niques may ofer global or local optimum solutions and
provide diverse outcomes. However, solving multimodal,
multiobjective (MO), and highly constrained problems is
challenging with classical optimization techniques due to

their low convergence rate, imbalance between the explo-
ration and exploitation phases, and tendency to converge to
local optima. To address these limitations, nature-inspired
algorithms based on human activities, swarm intelligence,
physical phenomena, and evolutionary concepts—known as
metaheuristics (MHs) algorithms—have been developed
[1–3]. Tese MHs are capable of fnding global optimum
solutions with less computational time, balanced exploration
and exploitation, and accurate results. Consequently, MHs
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can solve a wide range of design optimization challenges,
including but not limited to manufacturing problems, fuzzy
systems, structural optimization, transportation problems,
scheduling challenges, power system optimization, and
automobile systems [4–7]. However, despite the continuous
development of new MHs, the complexity of problems has
also increased with the advancement of new technologies. As
a result, many MHs tend to fnd local optima, exhibit an
improper balance between exploration and exploitation, and
struggle with highly constrained problems. To overcome
these shortcomings, enhancements to existing opti-
mizers—such as hybrid algorithms, oppositional-based
techniques, chaotic maps, Lévy fight strategies, and oppo-
sitional learning methods—have been introduced [8–12].
Tese modifed or hybrid algorithms have proven to be more
efcient and efective compared to the original MHs for
solving complex optimization tasks.

1.1. MO Optimization Algorithms and Literature Survey.
MO optimization is an important task where, instead of
a single ftness function, a problem or system involves multiple
objective functions with constraints and design variables.
Accordingly, the MO form of MH algorithms is crucial for
solving constrained problems with multiple ftness functions.
InMO problems, a set of Pareto-front solutions exists, and the
goal of a proposed algorithm is to produce solution sets that
closely approximate the Pareto-front with minimal deviations
[13, 14]. Tis article develops a MO version of a newly
established MH algorithm, the BBO algorithm, to solve fve
critical structural optimization problems. Te BBO algorithm
is inspired by the foraging, territory establishment, and snifng
behaviors of brown bears [15]. Te developed algorithm is
applied to fve structural design challenges, ranging from 10-
bar to 942-bar trusses, to minimize mass and nodal defection
as ftness functions for each problem.

Various MO versions of well-knownMH algorithms have
been developed and applied to structural problems, such as
the MOSOS algorithm [16]. Several bio-inspired MO algo-
rithms and MHs have been developed to address real-world
engineering challenges [17–20]. Tis article compares the
results obtained from the MOBBO with those of six
benchmarkMO algorithms. Additionally, hypervolume (HV)
analysis, generation-IGD, and STEmetrics analysis were used
to assess the performance of the developed algorithm.
Moreover, diversity curves, HV, and boxplot analysis further
deepen the study by evaluating MOBBO’s performance.

Researchers have studied decomposition-based MO
symbiotic organism search algorithms for optimizing truss
structures, such as the 37-bar, 60-bar, 72-bar, 120-bar, and
200-bar trusses. Augmenting decomposition techniques helps
achieve converged solutions and provides superior perfor-
mance compared to 10 benchmark algorithms. Te proposed
algorithm also outperforms MOSOS [21]. Efective grouping
of truss structures was identifed using MO structural opti-
mization techniques, addressing two conficting objective
functions: the weight of the structure and the discrete cross-
sectional areas of the members. Comparisons were made
between sixteen well-established MO algorithms, which
helped identify and optimize key structural members [22].

Additionally, hybrid grey wolf and cuckoo search opti-
mizers have been applied in a MO approach. Te proposed
hybrid MO-grey wolf-cuckoo search algorithm was tested
with CEC 2020 benchmarks and used to optimize critical truss
structures, demonstrating accuracy and diversity in the results
[23]. Furthermore, 60-bar and 200-bar intermediate truss
structures were optimized for weight and nodal displacement
using the MO-Lichtenberg optimizer [24]. A novel MO water
strider algorithm (MOWSA) was proposed to optimize eight
diferent trusses, from the 10-bar to the 942-bar truss. Te
results were compared with nine benchmark algorithms,
revealing that MOWSA outperformed the others in terms of
Pareto fronts, convergence, and solution trade-ofs [25].

A novel MOLCA (MO lever cancer optimizer) was
proposed, incorporating random oppositional–based
learning (ROBL) to enhance local and global search capa-
bilities, along with IFM (information feedback mechanism),
NDS (nondominated sorting), and crowding distance se-
lection to achieve efective Pareto optimal fronts [26]. In
addition to MO versions, researchers have developed hy-
bridized and improved MO algorithms to enhance truss
optimization results. For instance, a unique hybrid MO-
SHADE-MRFO (MO-success history-based parameter
adaptive diferential evolution with manta ray foraging
optimizer) was proposed to optimize six benchmark truss
designs. Te results were analyzed using HV GD, IGD, and
FSTE metrics, showing that enhancing SHADE improves
exploration capabilities, while MRFO maintains balance
between exploration and exploitation [27].

An interesting study explored the efectiveness of
NSGA-II and its nine variants in terms of convergence,
solution quality, and diversity. Each variant was applied to
optimize six truss structures, with weight and nodal dis-
placement as the objective functions.Te results showed that
NSGA-II, restricted NSGA-II, grid-based NSGA-II, and
ARSBX (adaptive real-coded simulated binary crossover)-
NSGA-II outperformed the other fve NSGA-II variants
[28]. Furthermore, a novel math-inspired MOEDO (MO
exponential distribution algorithm) was developed for
precise and global optimization of engineering problems,
including structural optimization [29]. Additionally, DSC-
MOAGDE, DSC-MOSOS, and IMOMRFO are among the
unique modifed MO algorithms proposed [30–32].

1.2. Novelty of the Study. Novelty of the Study: Tis article
presents the development of the MOBBO algorithm for
optimizing two critical parameters of trusses: weight and
nodal displacement. Te BBO algorithm is a promising
optimizer that has demonstrated efective results in
addressing various engineering challenges. Te MO version
of the BBO algorithm represents a signifcant enhancement
within the BBO algorithm family. Te MOBBO algorithm is
applied to optimize fve benchmark truss designs. Te
metrics analysis, including HV, GD, IGD, and STE, further
supports the novel fndings and underscores the merits of
the proposed algorithm in the feld of MO optimization.

Te rest of the article is structured as follows: Section 2:
Overview of the BBO algorithm; Section 3: MOBBO; Section
4: Practical Assessment; Section 5: Conclusion.
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2. Understanding of BBO

Te BBO algorithm is inspired by several intelligent be-
haviors of brown bears, such as following the group,
identifying food locations, and establishing their territory.
Tese behaviors are primarily based on their pedal scent
marking and snifng actions. Te algorithm has been de-
veloped and applied to the economic dispatch problem in
power transmission systems, demonstrating its capability to
balance exploration and exploitation phases while handling
complex problems. Te mathematical structure of the BBO
algorithm is discussed in the following subsection.

2.1. Initialization-Group Formation. In this phase, initial
random solution sets, representing groups of brown bears,
are generated, with their marked pedal scent marks treated
as decision variables within the solution sets. Te mathe-
matical representation of a randomly selected group of
brown bears within their specifc territory is given by
equation (1) [15].

Pi,j � P
min
i,j + λ P

max
i,j − P

min
i,j􏼐 􏼑, (1)

where random number is indicated with the notation λ
ranging from 0 to 1. Also, i-th pedal mark of j-th group is
denoted by Pi,j.

2.1.1. Technique of Pedal Scent Marking. Tis is one of the
most impressive walking techniques observed in brown
bears. It involves a distinctive manner of walking, where they
twist their feet to avoid prior depressions on the ground and
carefully step toward the targeted location. Tis specialized
walking behavior is most commonly observed inmale brown
bears. Mathematically, this behavior can be modeled as
shown in (2) [15].

P
new
i,j,k � P

old
i,j,k − θkαi,j,kP

old
i,j,k􏼐 􏼑, (2)

where updated pedal scent mark is indicated by Pnew
i,j,k at k-th

iteration of i-th group created j-th pedal mark. Moreover,
occurrence factor and random number ranging from 0 to
one is indicated with θk and αi,j,k respectively. Te careful
stepping characteristic involves repeating pedal mark im-
pressions by verifying previously marked pedals. Tis be-
havior helps to alert other group members efectively.
Equation (3) presents the mathematical formulation of the
careful stepping technique observed in brown bears.

P
new
i,j,k � P

old
i,j,k + Fk P

best
j,k − LkP

worst
j,k􏼐 􏼑. (3)

In (3), step factor is denoted with Fk, along with j-th best
and worst pedal mark at k-th iteration is denoted with Pbest

j,k

and Pworst
j,k , respectively. Lk indicates length of the step at

particular iteration.
A third unique walking behavior observed in brown

bears is the twisting of their feet. Male brown bears typically
twist their feet into previously formed pedal marks, making
them deeper and more pronounced for easier identifcation.
Te selection of pedal marks is based on the worst and best

pedal scent marks determined in the previous iteration. Te
mathematical representation of the twisting feet behavior is
given by equation (4).

P
new
i,j,k � P

old
i,j,k + ωi,k P

best
j,k − P

old
i,j,k􏼐 􏼑 − ωi,k P

worst
j,k − P

old
i,j,k􏼐 􏼑,

(4)

where angular velocity of the feet is denoted with ωi,k at i-th
pedal mark and k-th iteration.

2.2. Snifng Etiquette. Tis interactive behavior of brown
bears involves snifng to follow the pedal scent marks of
their group members in the right direction. Additionally,
they use snifng to establish their own territory and avoid
being misled by the pedal scent marks of other bears. Te
mathematical model for the snifng behavior is given by (5)
[15].

P
new
m,j,k �

P
old
m,j,k + λj,k P

old
m,j,k − P

old
n,j,k􏼐 􏼑if f P

old
m,k􏼐 􏼑<f P

old
n,k􏼐 􏼑,

P
old
m,j,k + λj,k P

old
n,j,k − P

old
m,j,k􏼐 􏼑if f P

old
n,k􏼐 􏼑<f P

old
m,k􏼐 􏼑,

⎧⎪⎨

⎪⎩

(5)

where λj,k is the random number that is evenly distributed
and ranging in the range of 0–1. Also, Pnew

m,j,k is the updated
pedal scent mark location with m≠ n. Moreover, Pold

m,k and
Pold

n,k corresponds to ftness function value at k-th iteration of
m and n groups, respectively.Te updating process for all the
stages described is applied to each group of brown bears
until the necessary criterion is met. Te pseudocode of the
BBO algorithm is shown below.

START
Defne objective function f(P), population size (m), set
number of design variables (n), limits on design var-
iables (LB, UB), and set termination criterion (‘FEmax’,
or ‘gmax’); where f(P) is the objective function and ‘P’ is
the design vector. Te brown bears’ group are con-
sidered to be a part of the population (i� 1,2,. . .,m) and
the bears’ levels of the group are considered as the
design variables (j� 1,2,. . .,n)./∗ Initialization/∗
Initialize the randomly generated set of the population
within its upper and lower bounds and evaluate it.
Pi,j � Pmin

i,j + λ (Pmax
i,j − Pmin

i,j )/∗ Initialize population/∗
λ is any random number evenly distributed in the range
[0; 1].
Arrange the population in ascending order of f(Pi)

values and select the best solution (Pbest
i ) and the worst

solution
FE� 0/∗ Functional Evaluations (FE) ∗/
for k� 1 to gmax do/∗ Initialize the optimization loop
∗/
(Pwrost

i ).

θk � k/gmax/∗ the occurrence factor∗/
for i� 1 tom do/∗ Start pedal scent marking behavior
phase/∗
% Characteristic gait while walking

Journal of Optimization 3
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if θk > 0&& θk ≤gmax/3/∗ Characteristic gait while
walking ∗/
Pnew

i,k � Pold
i,k − (θkαi,kPold

i,k )/∗ Generate new population
∗/
elseif θk >gmax/3&& θk ≤ 2gmax/3/∗ Careful stepping
characteristic ∗/
Pnew

i,k � Pold
i,k + Fk(Pbest

i,k − LkPworst
i,k );/∗ Generate new

population ∗/
/∗ where, Fk � β1,k.θk, Lk � 1 + β2,k, and β1,k & β2,k is
any random number in the range [0;1] ∗/
elseif θk > 2gmax/3&& θk ≤ 1/∗ Twisting feet
characteristic∗/
Pnew

i,k � Pold
i,k + ωi,k(Pbest

j,k − Pold
i,k ) − ωi,k(Pworst

i,k − Pold
i,k );

/∗ where, ωi,k � 2π.θk.ci,k, ci,k is an evenly distributed
random number in the range [0, 1] ∗//∗ Generate new
population ∗/
/∗ Select better group of bears. ∗/
if F(Xnew

i )<F(Xold
i ) then/∗ Greedy selection/∗

Pi,k � Pnew
i,k

else
Pi,k � Pold

i,k

end if
/∗ Select better group of bears. ∗/
FE�FE+1;/∗ Count Function evaluation/∗
end if
end for/∗Pedal scent marking behavior ends ∗/
for i� 1 to m do/∗ Snifng behavior starts ∗/
Select two random group of bears Pold

m, k & Pold
n, k where

n ≠ m.

Pnew
m,k �

P
old
m,k + λj,k(P

old
m,k − P

old
n,k) if f(P

old
m,k )<f(P

old
n,k )

P
old
m,k + λj,k(P

old
n,k − P

old
m,k) if f(P

old
n,k )<f(P

old
m,k )

⎧⎨

⎩

/∗ λj,k is an evenly distributed random number in the
range [0, 1] ∗/
/∗ Select better group of bears. ∗/
if F(Xnew

i )<F(Xold
i ) then/∗ Greedy selection/∗

Pi,k � Pnew
i,k

else
Pi,k � Pold

i,k

end if
FE�FE�1;/∗ Count Function evaluation/∗
end for/∗ Snifng behavior ends ∗/
Arrange the population in ascending order of f(Pi)

values and select the best solution (Pbest
i ) and the worst

solution
if FE≥ FEmax Or k� gmax then/∗ Termination crite-
rion/∗
break optimization loop
end if
k� k+1;

end for/∗ Optimization loop ends/∗
Display best solutions & store results
STOP

3. MOBBO Algorithm

MOBBO is an extension of the BBO algorithm originally
designed for single-objective optimization problems. Te
MOBBO algorithm is based on the concept of dominance
criteria for identifying sets of nondominated and dominated
solutions. Nondominated solutions are determined using
dominance strategies, which involve identifying the best
solution while minimizing the detriment to other solutions
for a particular objective function. Accordingly, the com-
parison was made amongst two design solution sets, X2 and
X2 corresponds to function vectors f1 and f2. For instance,
maximization of ftness function if X1 dominates over X2
then all elements in f1 are greater than or equal to their
corresponding elements in f2. Solutions not dominated by
any others in the set are deemed nondominated and stored
in an external archive. Tis archive is utilized to construct
the Pareto front, which represents the optimal set of trade-
of solutions.

MOBBO uses an external archive for MO optimization
to preserve nondominated solutions, unlike the single-
objective BBO algorithm. Te ε-dominance-based updat-
ing approach is employed to identify dominance relation-
ships within this repository. Tis technique divides the
solution space into boxes of diferent shapes based on the
number of objectives. Solutions are grouped within these
boxes, and the dominant solutions in each box are retained
while others are removed. Tis process signifcantly en-
hances the diversity and quality of solutions by ensuring that
only nondominated solutions are stored in the archive. Te
method employs a grid-based technique and a fxed-size
archive to store the best solutions found during each update.
Te ε-dominance approach is used regularly to maintain and
update the collection of nondominated solutions. Tis
strategy enables MOBBO to systematically explore the MO
search space and progressively approach well-distributed
Pareto fronts.

Te pseudocode of the BBO algorithm is shown below.

START
Defne objective function f(P), population size (m), set
number of design variables (n), limits on design var-
iables (LB, UB), and set termination criterion (‘FEmax’,
or ‘gmax’); where f(P) is the objective function and ‘P’ is
the design vector. Te brown bears’ group are con-
sidered to be a part of the population (i� 1, 2, . . ., m)
and the bears’ levels of the group are considered as the
design variables (j� 1, 2, . . ., n). /∗ Initialization/∗
Initialize the randomly generated set of the population
within its upper and lower bounds and evaluate it.
Pi,j � Pmin

i,j + λ (Pmax
i,j − Pmin

i,j )/∗ Initialize population/∗
λ is any random number evenly distributed in the range
[0; 1].

4 Journal of Optimization
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Perform Non-Dominated Sorting and identify the
best solution, select the best solution (Pbest

i ), and the
worst solution (Pwrost

i ).

FE� 0/∗ Functional Evaluations (FE) ∗/
for k� 1 to gmax do/∗ Initialize the optimization loop
∗/
/∗ Pareto sorting/∗
θk � k/gmax/∗ the occurrence factor∗/
for i� 1 tom do/∗ Start pedal scent marking behavior
phase/∗
% Characteristic gait while walking
if θk > 0&& θk ≤gmax/3/∗ Characteristic gait while
walking ∗/
Pnew

i,k � Pold
i,k − (θkαi,kPold

i,k )/∗ Generate new population
∗/
elseif θk >gmax/3&& θk ≤ 2gmax3/∗ Careful stepping
characteristic ∗/
Pnew

i,k � Pold
i,k + Fk(Pbest

i,k − LkPworst
i,k ) ;

/∗ where, Fk � β1,k.θk, Lk � 1 + β2,k, and β1,k& β2,k is
any random number in the range [0;1] ∗/
elseif θk > 2gmax/3&& θk ≤ 1/∗ Twisting feet
characteristic∗/
Pnew

i,k � Pold
i,k + ωi,k(Pbest

j,k − Pold
i,k ) − ωi,k(Pworst

i,k − Pold
i,k ) ;

/∗ where, ωi,k � 2π.θk.ci,k, ci,k is an evenly distributed
random number in the range [0, 1] ∗/
/∗ Select better group of bears. ∗/
if F(Xnew

i )<F(Xold
i ) then/∗ Greedy selection/∗

Pi,k � Pnew
i,k

else
Pi,k � Pold

i,k

end if
/∗ Select better group of bears. ∗/
FE�FE+1;/∗ Count Function evaluation/∗
end if
end for/∗Pedal scent marking behavior ends ∗/
for i� 1 to m do/∗ Snifng behavior starts ∗/
Select two random group of bears Pold

m, k & Pold
n, k where

n ≠ m.

Pnew
m,k �

P
old
m,k + λj,k(P

old
m,k − P

old
n,k) if f(P

old
m,k )<f(P

old
n,k )

P
old
m,k + λj,k(P

old
n,k − P

old
m,k) if f(P

old
n,k )<f(P

old
m,k )

⎧⎨

⎩

/∗ λj,k is an evenly distributed random number in the
range [0, 1] ∗/
/∗ Select better group of bears. ∗/
if F(Xnew

i )<F(Xold
i ) then/∗ Greedy selection/∗

Pi,k � Pnew
i,k

else
Pi,k � Pold

i,k

end if

FE�FE�1;/∗ Count Function evaluation/∗
end for/∗ Snifng behavior ends ∗/
Perform Non-Dominated Sorting, identify the best
solution, select the best solution (Pbest

i ), the worst
solution (Pwrost

i ) & sore in External Archive
if FE≥ FEmax Or k� gmax then/∗ Termination crite-
rion/∗
break optimization loop
end if
k� k+1;
end for/∗ Optimization loop ends/∗
Display Pareto Optimal Set & store results
STOP

3.1. Design Aspect for Structural Optimization of Trusses.
MO structural optimization involves minimizing the
structural weight of the overall truss while simultaneously
controlling the maximum nodal defection. Te mathe-
matical formulations for the population sets, weight opti-
mization objective, and nodal defection objective are given
in equations (6)–(8).

Population sets:

A � A1, A2, . . . , Am􏼈 􏼉. (6)

To minimize the truss weight:

f1(A) � 􏽘
m

i�1
Aiρi Li. (7)

To maximize maximum nodal defection:

f2(A) � max δj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓. (8)

Subject to:
Behavior constraints:
Stress constraints,

g(A) � σi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − σmax

i ≤ 0. (9)

Side constraints:
Cross − sectional area constraints,

A
min
i ≤Ai ≤A

max
i , (10)

where σi is the permissible stress with weight density and bar
length of truss element is denoted by ρi and Li, respectively.
Design vector is denoted with A. Te permissible upper and
lower limits are signifed by superscripts ‘max’ and ‘min,’
respectively.

Five diferent truss structures, as shown in Figure 1 (a, b,
c, d, and e), are optimized usingMOBBO and six benchmark
algorithms. Te design confgurations for each truss
structure (10-bar, 25-bar, 60-bar, 72-bar, and 942-bar
trusses) are detailed in Table 1. Table 1 provides in-
formation on design variables, including truss elements,
stress conditions as constraints, density for weight

Journal of Optimization 5
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reduction, and loading conditions on each node. Addi-
tionally, the table records the elemental member groupings
and size numberings for truss structures ranging from the
25-bar to the 942-bar truss.

3.2. Constraint Handling Technique. MOBBO uses a static
penalty approach to handle the critical constraints of each
truss design [33, 34]. Te mathematical formulation for this
approach is given by (11).

f j (X) �

fj(X) no constraint violation,

fj(X)∗ 1 + ε1 ∗ ∁( 􏼁
ε2 , ∁ � 􏽘

q

i�1
∁i, ∁i � 1 −

pi
p∗i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

where pi is a value of constraint infringement with reference
to bound p∗i . Te constants values, ε1 and ε2 are taken 3
based on experiments.

Te computational complexity of the MOBBO algorithm
is largely infuenced by the size of the population, the
number of objectives, and the number of iterations. Te
most computationally expensive operations are usually those
related to Pareto front identifcation, which results in the
complexity. Tis complexity indicates that as the population
size and the number of objectives increase, the computa-
tional demand of the algorithm grows signifcantly, par-
ticularly in MO optimization problems with large
populations and many objectives.

4. Practical Assessment

Te proposed MOBBO optimizer is tested for structural
optimization of fve diferent complex truss structures
ranging from 10-bar truss to 942 bars including 25-bar, 60-
bar, and 72-bar trusses. Additionally, opted results in terms
of statistics were compared with well-known and benchmark
six MO versions of algorithms namely: MOALO [35],
NSGA-II [36], MOWCA [37], MOBA [38], DEMO [39], and
MODA [40]. Te compared algorithms are competitive with
MOBBO and assist in identifying efectiveness and domi-
nance of the proposed algorithm. Te parameter settings in
the experimental section were tested fve times using dif-
ferent sets. Te best performance for each algorithm was
considered for this study. Each algorithm was independently
executed 30 times for each design example, using a pop-
ulation size of 100 and 50,000 function evaluations (FEs).
Accordingly, Table 1 designates design variables, constant
parameters and loading conditions for each individual truss
structure. Moreover, Figure 1 shows 3-D structural diagram
of analyzed truss structures including loading conditions,
dimensions and parametric constraints.

4.1. Performance Assessments

• Te HV indicator measures the volume of the HV
dominated by the set of nondominated solutions (i.e.,
the Pareto front) found by the algorithm. It quantifes
the portion of the objective space covered by the
obtained solutions that are not dominated by any other
solution. Higher values of HV indicate better

performance, as they represent a larger portion of the
Pareto front covered by the algorithm’s solutions.

• GD measures the average distance from a set of so-
lutions produced by the algorithm to a reference set of
true Pareto-optimal solutions in the objective space. It
provides an indication of how well the algorithm has
converged to the Pareto front. Smaller values of GD
indicate better convergence. IGD, as the name sug-
gests, is the inverse of GD. It measures how close the
solutions produced by the algorithm are to the true
Pareto front. Terefore, smaller values of IGD imply
better performance, indicating that the algorithm’s
solutions are closer to the Pareto front.

• Te STE test evaluates the diversity and spread of
solutions along the Pareto front. It calculates the ratio
of the average distance between consecutive solutions
along the Pareto front to the extent of the Pareto front.
A higher STE ratio suggests better diversity and spread
among the solutions. Tis test helps assess whether the
algorithm is producing solutions that are evenly dis-
tributed along the Pareto front or if they are clustered
in certain regions.

• Box-plot analysis, diversity curves, and HV vs. func-
tional graphs are plotted to further demonstrate the
proposed algorithm’s capabilities to converge on
critical problems and efectively optimize the solution.

4.2. Results and Discussion. In this section, statistical results
attained by MOBBO for the each tests were discussed along
with comparison of the data with other considered algo-
rithms. For each statistical tests, maximum, minimum,
average, standard deviation, and Friedman rank was attained
and comparison was made to confrm the efectiveness of
MOBBO for global optimization.

4.2.1. HV Analysis for Truss Structures. Table 2 shows the
results of the HV test for all compared algorithms, including
MOBBO, across various truss confgurations. Bold-faced
values indicate results achieved by MOBBO. For the 10-
bar structure, MOBBO achieves a maximum objective
function value of 59,973, which is better than all other al-
gorithms. Additionally, MOBBO obtains a superior Fried-
man rank of 1 with the least standard deviation of 239,
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(d)
Figure 1: Continued.
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compared to all other algorithms, indicating better con-
vergence and minimal deviations. A similar scenario is
observed for the 25-bar truss, where MOBBO exhibits the
least deviations, with a value of 9, compared to other al-
gorithms. For the 25-bar truss, MOBBO achieves a maxi-
mum objective function value of 1,956, which is 1.2%, 1.01%,
and 3.9% better than MODA, MOBA, and DEMO, re-
spectively. In this case, MOBBO has a Friedman rank of 1.03,
followed by MODA and MOBA with ranks of 2.73 and 2.40,
respectively.

For the 60-bar truss, MOBBO excels in terms of standard
deviation with a value of 3, which is signifcantly lower than
that of other algorithms. MOWCA and NSGA-II have

minimum values of 85 and 2,438, respectively. MOBBO
achieves a maximum objective function value of 4,111,
which is 11.1%, 8.2%, 0.3%, 39.3%, 6.56%, and 3.8% better
than MOALO, MODA, MOWCA, NSGA-II, DEMO, and
MOBA, respectively. For the 72-bar truss, MOBBO realizes
the most favorable standard deviation of 55, competitive
with NSGA-II but signifcantly lower than MOWCA, which
has a standard deviation of 288.

Te 942-bar truss is particularly challenging to optimize
due to its constraints. MOBBO achieves one of the most
favorable standard deviation values for the HV test, with
a value of 541,016. Additionally, MOBBO realizes a maxi-
mum ftness function value of 41,280,653, which is 4.3%,
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Figure 1: (a) 10-bar truss, (b) 25-bar truss, (c) 60-bar truss, (d) 72-bar truss, and (e) 942-bar truss.
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Table 2: Te HV of the considered truss structures.

HV MOALO MODA MOWCA MOBBO NSGA II DEMO MOBA

10-bar

Average 41,661 56,658 44,689 59,541 38,774 57,234 57,923
Max 54,036 58,153 56,501 59,973 45,306 58,484 59,680
min 26,026 53,284 13,537 58,981 0 54,034 56,393
Std 6422 955 9620 239 8128 923 829

Friedman 6.10 3.70 5.50 1.00 6.33 2.90 2.47

25-bar

Average 1402 1870 1068 1942 1641 1681 1893
Max 1805 1931 1695 1956 1716 1882 1936
min 919 1704 163 1918 1509 737 1823
Std 261 50 497 9 44 268 25

Friedman 5.83 2.73 6.60 1.03 5.00 4.40 2.40

60-bar

Average 3230 3468 3202 4117 2705 3639 3920
Max 3695 3794 4111 4122 2916 3855 3961
min 2475 3081 85 4110 2438 3404 3827
Std 329 187 1191 3 101 114 32

Friedman 5.27 4.60 4.10 1.00 6.70 4.03 2.30

72-bar

Average 2008 2045 1925 2010 1640 2098 2150
Max 2190 2210 2212 2171 1759 2263 2236
min 1738 1755 1207 1914 1553 1909 1897
Std 139 114 288 55 55 81 69

Friedman 4.00 3.50 4.40 4.43 6.83 2.90 1.93

942-bar

Average 35,043,988 31,077,869 32,023,740 40,376,435 25,364,659 33,692,954 31,608,886
Max 37,891,766 32,936,248 34,830,945 41,280,653 26,940,679 36,135,237 34,550,582
min 28,913,236 28,802,015 28,419,845 38,772,387 23,983,018 30,230,056 27,473,372
Std 1,674,722 902,204 1,627,971 541,016 798,545 1,634,927 1,648,535

Friedman 2.43 5.20 4.47 1.00 7.00 3.13 4.77
Average Friedman 4.73 3.95 5.01 1.69 6.37 3.47 2.77

Overall Friedman rank 5 4 6 1 7 3 2

Table 3: Te GD metric of the considered truss structures.

GD MOALO MODA MOWCA MOBBO NSGA II DEMO MOBA

10-bar

Average 1.7545 4.8806 5.5589 4.2326 3.33E+08 4.6625 5.0069
Max 3.5112 11.5492 7.9363 4.5119 1.00E+10 6.0712 5.7857
min 0.7382 3.6190 2.5413 3.9115 4.3175 3.2262 3.9409
Std 0.6821 1.7381 1.2889 0.1259 1.83E+09 0.7183 0.4895

Friedman 1.03 3.67 5.07 2.93 6.90 3.80 4.60

25-bar

Average 0.1033 0.4172 0.5095 0.3786 1.2125 0.6415 0.5140
Max 0.1641 0.6795 0.6976 0.6497 2.0225 2.0462 0.6516
min 0.0583 0.2078 0.2869 0.2852 0.8281 0.2577 0.4098
Std 0.0315 0.1151 0.1039 0.0671 0.2697 0.4822 0.0685

Friedman 1.00 3.53 4.67 2.80 6.90 4.37 4.73

60-bar

Average 0.1263 0.3757 0.3127 0.4645 0.2919 0.6766 0.6315
Max 0.2215 0.7467 0.7420 0.8227 0.9202 2.1146 2.0914
min 0.0649 0.2972 0.0000 0.2728 0.0988 0.3055 0.2735
Std 0.0407 0.0814 0.1909 0.1712 0.1655 0.4399 0.5299

Friedman 1.37 4.17 3.43 4.90 2.93 6.23 4.97

72-bar

Average 0.3187 0.9545 0.9785 2.0781 2.8682 3.4568 0.9943
Max 0.8288 1.5601 1.1481 3.8788 4.5004 8.2418 2.0693
min 0.1030 0.6330 0.6465 0.9917 2.1003 0.8155 0.7531
Std 0.1828 0.1771 0.1179 0.8032 0.5159 1.8999 0.2531

Friedman 1.00 3.07 3.27 5.37 6.20 6.23 2.87

942-bar

Average 805.1905 1919.9638 2104.3739 1502.1881 7633.1544 1840.4447 3183.2252
Max 1580.3798 2907.6639 2546.4594 1673.9293 11,473.2453 2102.8043 6118.9575
min 359.4539 1583.9472 1774.8939 1356.6083 4946.4910 1124.9166 2127.5528
Std 277.9754 264.6549 181.6167 74.0905 1601.2645 196.2857 842.6339

Friedman 1.03 3.73 4.73 2.00 7.00 3.57 5.93
Average Friedman 1.09 3.63 4.23 3.60 5.99 4.84 4.62

Overall Friedman rank 1 3 4 2 7 6 5
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Table 4: Te IGD metric of the considered truss structures.

IGD MOALO MODA MOWCA MOBBO NSGA II DEMO MOBA

10-bar

Average 337.7851 65.1999 242.6063 10.7533 3.33E+08 24.0586 26.3277
Max 428.8015 135.5445 686.8785 18.0493 1.00E+10 113.7475 51.5326
min 105.0098 17.8933 89.2989 5.9684 183.2933 9.1740 4.6722
Std 71.3183 28.0497 131.6239 2.6639 1.83E+09 23.5373 12.5089

Friedman 6.67 3.93 5.50 1.27 5.80 2.20 2.63

25-bar

Average 31.0825 5.5220 34.2540 0.7006 12.0472 4.6953 1.7156
Max 39.1653 16.7248 72.4983 1.5462 16.1233 15.9779 4.6814
min 6.9256 0.9529 7.5047 0.3051 8.4898 0.9246 0.4990
Std 7.4648 4.1291 21.0961 0.2530 1.9265 3.7638 0.8528

Friedman 6.47 3.70 6.23 1.07 5.07 3.20 2.27

60-bar

Average 21.8304 11.5426 15.0571 0.4063 9.1679 3.5243 0.8292
Max 30.5137 17.8789 61.6500 0.4886 10.8505 6.8207 1.5599
min 6.1189 5.3564 0.6448 0.3163 7.3776 1.5637 0.4933
Std 5.8297 3.3372 17.5291 0.0430 0.9009 1.3710 0.2542

Friedman 6.67 5.43 4.77 1.00 4.77 3.33 2.03

72-bar

Average 42.7454 17.2242 26.6017 18.0953 37.9962 8.6316 5.6075
Max 61.1874 33.8744 69.0456 23.6792 44.4788 18.9953 17.2069
min 12.5160 7.1265 7.9792 9.8172 29.3506 2.1094 1.9515
Std 14.3817 6.9514 17.2978 3.1619 4.2663 3.8530 2.8618

Friedman 6.33 3.57 4.67 4.03 6.10 1.97 1.33

942-bar

Average 70,895.2758 63,269.4682 65,138.7225 5764.7019 86,768.1714 32,294.1375 63,795.3654
Max 120,872.6063 76,067.8545 79,545.9719 14,708.9321 96,494.8847 52,695.5855 85,851.7687
min 21,126.8742 41,499.8782 46,504.2621 1348.0140 77,461.3977 18,879.1596 40,106.5176
Std 26,071.6203 7422.0750 10,400.0847 3120.8487 4933.3513 7347.5856 10,259.4185

Friedman 5.17 4.37 4.37 1.00 6.60 2.13 4.37
Average Friedman 6.26 4.20 5.11 1.67 5.67 2.57 2.53
Overall Friedman

rank 7 4 5 1 6 3 2

Table 5: Te STE metric values obtained for the truss problems.

STE MOALO MODA MOWCA MOBBO NSGA-II DEMO MOBA

10-bar

Average 0.0337 0.0116 0.0297 0.0058 3.33E+18 0.0063 0.0049
Max 0.0655 0.0321 0.0849 0.0060 1.00E+20 0.0137 0.0059
min 0.0000 0.0046 0.0026 0.0055 0.0064 0.0039 0.0038
Std 0.0193 0.0073 0.0199 0.0001 1.83E+19 0.0019 0.0006

Friedman 5.20 4.03 5.23 2.60 6.77 2.77 1.40

25-bar

Average 0.0304 0.0229 0.0286 0.0067 0.0565 0.0065 0.0050
Max 0.0531 0.0575 0.0846 0.0071 0.1156 0.0162 0.0074
min 0.0058 0.0056 0.0000 0.0064 0.0230 0.0020 0.0035
Std 0.0187 0.0121 0.0230 0.0002 0.0259 0.0028 0.0012

Friedman 4.97 4.73 4.67 2.80 6.57 2.63 1.63

60-bar

Average 0.0345 0.0173 0.0252 0.0060 0.0194 0.0069 0.0077
Max 0.0515 0.0546 0.0995 0.0069 0.0368 0.0193 0.0222
min 0.0015 0.0059 0.0000 0.0056 0.0065 0.0036 0.0046
Std 0.0161 0.0106 0.0290 0.0003 0.0081 0.0032 0.0031

Friedman 6.03 4.90 4.77 1.80 5.40 2.10 3.00

72-bar

Average 0.0328 0.0206 0.0162 0.0070 0.0557 0.0058 0.0079
Max 0.0520 0.0457 0.0382 0.0074 0.1051 0.0086 0.0112
min 0.0000 0.0062 0.0069 0.0065 0.0187 0.0042 0.0044
Std 0.0192 0.0100 0.0081 0.0002 0.0185 0.0014 0.0018

Friedman 5.03 4.97 4.60 2.37 6.77 1.57 2.70

942-bar

Average 0.0364 0.0145 0.0125 0.0066 0.1135 0.0073 0.0232
Max 0.0710 0.0447 0.0238 0.0072 0.4678 0.0183 0.0537
min 0.0007 0.0062 0.0060 0.0060 0.0240 0.0015 0.0077
Std 0.0162 0.0084 0.0044 0.0003 0.0812 0.0035 0.0117

Friedman 5.33 3.77 3.60 1.63 6.90 1.93 4.83
Average Friedman 5.31 4.48 4.57 2.24 6.48 2.20 2.71

Overall Friedman rank 6 4 5 2 7 1 3
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23.15%, 19.7%, 45.67%, 12.10%, and 17% superior to
MOALO, MODA, MOWCA, NSGA-II, DEMO, and
MOBA, respectively. MOBBO’s dominance in the HV test
for the 942-bar truss is confrmed by its frst-place F-test
rank, indicating a superior convergence rate. Moreover,
MOBBO achieves an average Friedman rank of 1.68, with
a frst-place rank overall in the HV test, followed by MOBA
and DEMO in second and third places, respectively. MOBA,
DEMO, and MODA achieve second, third, and fourth
Friedman ranks in the HV metrics.

4.2.2. GD and IGD Metrics Analysis for Truss Structures.
GD metrics analysis (Table 3) indicates the diference be-
tween the true Pareto front optimal set and the solutions
produced by the tested algorithms within the objective space.
IGD metrics (Table 4) provide information regarding how
close the solution sets produced by the algorithm are to the
Pareto front solutions. For both analyses, smaller values are
preferred.

For the 10-bar truss, MOBBO achieved the best values
for standard deviations with 0.1259 for GD metrics and
2.6639 for IGDmetrics, outperforming all other competitive
algorithms. MOALO also performed efectively in GD
metrics for the 10-bar truss structure, with a Friedman rank

of 1.07, followed by MOBBO with a rank of 2.93. For IGD
analysis, MOBBO achieved a Friedman rank of 1.27, in-
dicating minimal diference between the solution sets pro-
duced by MOBBO and the Pareto optimal set. GD metric
analysis for the 25-bar and 60-bar trusses, as shown in
Table 3, suggests that MOALO performed better in terms of
maximum values for objective functions, with values of
0.1641 and 0.2215, respectively, and Friedman ranks of 1 and
1.37 for the 25-bar and 60-bar trusses, respectively. How-
ever, MOBBO also demonstrated efective results for GD
metrics analysis. For the 25-bar and 60-bar truss designs,
MOBBO recorded efective maximum values for the ftness
functions as 1.5462 and 0.4886, respectively, for IGDmetrics
analysis, showing closeness of the results to global optimum
solutions. For IGD metrics analysis, MOBBO achieved
Friedman ranks of 1.07 and 1 for the 25-bar and 60-bar truss
structures, respectively. In contrast, MOBA, DEMO, and
MODA achieved Friedman ranks of 2.27, 3.20, and 3.70,
respectively, for the 25-bar truss and 2.03, 3.33, and 4.77,
respectively, for the 60-bar truss.

For the 72-bar truss, GD metrics analysis showed that
MOBBO achieved a Friedman rank of 5.37 with a maximum
ftness function value of 3.8788, which is competitive
compared to other algorithms. MOALO, MODA, and
MOBA achieved efective standard deviations of 0.1828,

Table 6: Te Overall Friedman rank obtained for the truss problems.

MOALO MODA MOWCA MOBBO NSGA II DEMO MOBA MOFA
10-bar 4.75 3.83 5.33 1.95 6.45 2.92 2.78 4.75
25-bar 4.57 3.68 5.54 1.93 5.88 3.65 2.76 4.57
60-bar 4.83 4.78 4.27 2.18 4.95 3.93 3.08 4.83
72-bar 4.09 3.78 4.23 4.05 6.48 3.17 2.21 4.09
942-bar 3.49 4.27 4.29 1.41 6.88 2.69 4.98 3.49
Average Friedman 4.35 4.07 4.73 2.30 6.13 3.27 3.16 4.35
Overall Friedman rank 5 4 6 1 7 3 2 5
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Figure 2: Best Pareto fronts of the 10-bar truss.
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0.1771, and 0.2531, respectively, demonstrating efective
results for the 72-bar truss. For IGD metrics analysis,
MOBBO realized standard deviations that were 76.85%,
54.78%, and 81.43% less than those of MOALO,MODA, and
MOWCA, respectively, indicating that the achieved solu-
tions are closer to the Pareto front solutions. MOBBO
showed efective results for the most challenging 942-bar
truss structure compared to other studied truss structures.
For GD and IGD metrics of the 942-bar truss, MOBBO
achieved Friedman ranks of 2.0 and 1, respectively, dem-
onstrating the algorithm’s dominance over the compared
MO versions. Additionally, MOBBO achieved an average of
50% and 70% less standard deviation in the results compared

to other algorithms for GD and IGD metrics analysis, re-
spectively. Overall, MOBBO achieved Friedman ranks of 2
and 1 for GD and IGD metrics analysis, respectively,
highlighting the efectiveness of the proposed algorithm
compared to existing MO versions.

4.2.3. STE Metric Analysis. STE metrics analysis provides
information on the diversity of solutions relative to Pareto
fronts, the convergence of results, and the clustering of
solution sets within the search space. Higher values of STE
metrics indicate better diversity among the solutions. Table 5
presents the statistics recorded in STE tests for MOBBO and
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Figure 3: Best Pareto fronts of the 25-bar truss.
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other compared algorithms. For the 10-bar, 25-bar, and 60-
bar trusses, MOBBO achieved Friedman ranks of 2.60, 2.80,
and 1.80, respectively. Additionally, MOBBO showed
minimal deviations in the results compared to all other
algorithms, with values of 0.0001, 0.0002, and 0.0003 for the
10-bar, 25-bar, and 60-bar trusses, respectively. For the 72-
bar truss, MOBBO demonstrated better average and max-
imum values for ftness functions at 0.0070 and 0.0074,
respectively, with a standard deviation of 0.0002, which was
lower than that of the other algorithms. However, DEMO,
MOBA, and MOBBA had Friedman ranks of 1.57, 2.70, and

2.37, respectively, for the 72-bar truss. For the 942-bar truss,
MOBBO showed dominance with the least standard de-
viation of 0.0003 and a Friedman rank of 1.63, out-
performing MOALO and NSGA-II. In contrast, DEMO had
a standard deviation of 0.0035 with a Friedman rank of 1.93.

Table 6 provides information on the overall Friedman
ranks obtained for each truss structure by the compared
algorithms, including MOBBO. MOBBO achieved the frst
position in the overall Friedman rank analysis, followed by
MOBA and DEMO in second and third positions, re-
spectively. For each individual truss case, MOBBO realized
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Figure 7: Te hypervolume vs. function evaluations of the
10-bar truss.
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Figure 8: Te hypervolume vs. function evaluations of the
25-bar truss.
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Figure 9: Te hypervolume vs. function evaluations of the
60-bar truss.
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an average Friedman rank of 2.60, demonstrating the al-
gorithm’s superior capability in attaining global optima
compared to the other algorithms.

4.2.4. Best Pareto Fronts, HV, Diversity Curves, and Boxplots
Graphs Analysis for MOBBO. Figures 2, 3, 4, 5, 6 show the
mass of truss structures versus nodal displacements curves
for the best Pareto front solutions achieved by the algo-
rithms. Figures 2 and 3 display the trend lines of the best
Pareto fronts for the 10-bar and 25-bar structures, re-
spectively, as achieved by all compared algorithms. Te
graphs reveal that MOBBO for the 10-bar and 25-bar

structures is well-converged and smooth compared to the
erratic nature of MOBA and NSGA-II. Specifcally,
MOBBO, MOBA, and MODA converge around 9000 mass
values and exhibit a constant nature with minimal nodal
displacement for the 10-bar truss. For the 25-bar truss,
MOBBO maintains a constant trend after 800 mass values
with 0.25 displacements.

Figures 4 and 5 present the best Pareto front graphs for
the 60-bar and 72-bar trusses, respectively. MOBBO dem-
onstrates evenly distributed and converged patterns in both
cases, whereas other algorithms, especially NSGA-II and
DEMO, show intermittent and irregular patterns. Figure 6
illustrates the 942-bar truss case, where MOBBO displays
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Figure 11: Te hypervolume vs. function evaluations of the
942-bar truss.
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Figure 12: Te diversity curve of 10-bar truss problem.
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Figure 13: Te diversity curve of 25-bar truss problem.
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Figure 14: Te diversity curve of 60-bar truss problem.
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a regular and smooth graph compared to other algorithms,
with a notable break in the pattern after 1.0 mass value. In
contrast, DEMO, NSGA-II, MODA, MOALO, and MOBA
exhibit erratic and uneven patterns. Overall, the best Pareto
front graphs for each truss structure case highlight the ef-
fectiveness and efciency of the MOBBO algorithm.

Figures 7, 8, 9, 10, 11 show the graphs of each tested
algorithm for HV versus FEs for diferent truss structures.
According to Figures 7 and 8, MOBBO exhibits a smooth
and constant curve after 50,000 and 1800 HVs, respectively.
All algorithms show converged patterns for both the 10-bar
and 25-bar cases. For the 60-bar and 72-bar truss structures,

as depicted in Figures 9 and 10, NSGA-II maintains
a constant pattern with no noticeable variations. Meanwhile,
the MOBBO graph rises up to 3500 HVs and then becomes
constant around 30,000 evaluations for the 60-bar truss, and
shows a nearly constant trend around 1000 HVs for the 72-
bar truss case.

For the 942-bar truss case (Figure 11), MOBBO’s graph
increases up to 7×10̂7 HVs and then shows a linear trend,
while MOALO and MOBA exhibit irregular patterns. Ad-
ditionally, NSGA-II displays straight constant lines, whereas
MOWCA, DEMO, and MODA show increasing trend lines
after certain HVs and evaluations for the 942-bar truss.

Figures 12, 13, 14, 15, 16 show the diversity graphs for all
truss structures generated by the tested algorithms, in-
cluding MOBBO. For the 10-bar and 25-bar structures,
MOBBO initially shows slight diversity around 10,000 FEs,
but it performs better compared to other algorithms

p72bar

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

D
iv

er
sit

y

×104

MOALO
MODA
MOWCA
MOBBO

NSGAII
DEMO
MOBA

0.5 1 1.5 2 2.5 3 3.5 4 4.5 50
FEs

Figure 15: Te diversity curve of 72-bar truss problem.
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Figure 18: Boxplots of 25-bar truss.
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thereafter. In contrast, MOWCA, DEMO, MODA, and
MOBA exhibit signifcant diversity changes up to 50,000
iterations, with no clear convergence for the 10-bar and 25-
bar cases.

According to Figure 14, for the 60-bar truss, theMOBBO
graph is a smooth line after 500 iterations with diversity
values around 0.3, while MOWCA and DEMO present
erratic graphs with widespread variations across iterations.
Figures 15 and 16 display the diversity curves for the 72-bar
and 942-bar truss cases, respectively. In both cases, MOBBO
performs well, with its trend lines showing promising results
compared to other algorithms.

Figures 17, 18, 19, 20, 21 show boxplot analyses for all the
tested algorithms. Smaller boxplots indicate better perfor-
mance of the algorithm. Te upper and lower lines within
the boxplots represent the boundary values for the
search space.

Figures 17 and 18 depict the boxplots for the 10-bar and
25-bar trusses, respectively, with MOBBO showing thin
boxplots. MODA,MOBA, andNSGA-II present competitive
boxplots similar to MOBBO, while MOWCA shows the
worst case.

For the 60-bar truss, Figure 19 reveals that MOBBO has
a nearly fat boxplot with minimal deviations, demonstrating
its dominance over the compared optimizers. In the 72-bar
truss case, MOBBO, NSGA-II, DEMO, and MOBA show
superior results compared to the wider spread of MOWCA
and MOALO. For the 942-bar truss study, all optimizers
show wide spread boxplots except MOBBO and MOALO.

5. Conclusion and Future Works

In conclusion, the comprehensive analysis demonstrates the
superior performance of the MOBBO algorithm in tackling
complex structural optimization problems. MOBBO’s ef-
cient convergence, solution diversity, and efectiveness in
handling highly constrained problems make it a promising
approach for MO optimization tasks across various engi-
neering domains. Te key points are as follows:

• Across all truss structures, MOBBO consistently
achieved competitive or superior HV values compared
to benchmark algorithms.

• For instance, in the case of the 10-bar truss structure,
MOBBO attained a HV of 59,541.

• MOBBO also demonstrated better convergence with
a standard deviation of 239 and a Friedman rank of 1.0,
indicating minimal deviations and efcient
convergence.

• MOBBO exhibited impressive performance in GD
metrics, indicating its convergence to the Pareto front.
MOBBO’s competitive performance was further val-
idated by its Friedman rank of 2.0 for GD metrics and
1.0 for IGD metrics, demonstrating its efectiveness in
achieving solutions close to the Pareto front.
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• Notably, MOBBO consistently exhibited lower stan-
dard deviations compared to other algorithms, in-
dicating better solution spread and diversity.

• Visual representations, including Pareto front graphs,
HV vs. FE curves, diversity curves, and boxplots,
further support MOBBO’s efectiveness. MOBBO
consistently showed smooth convergence and stable
performance across diferent truss structures, con-
trasting with erratic patterns observed in some
benchmark algorithm. Boxplot analyses revealed
MOBBO’s narrow spread of results, indicating its
robust performance and efectiveness in addressing
optimization challenges.

While the MOBBO algorithm has demonstrated sig-
nifcant advantages in structural optimization, there are
several avenues for future research and development:

• Scalability to Larger and More Complex Problems:
Future studies could explore MOBBO’s performance
on even larger and more intricate structural optimi-
zation problems, including those with higher di-
mensionality or more complex constraints.
Investigating how MOBBO scales with problem
complexity would be valuable in understanding its
broader applicability.

• Hybridization with Other Algorithms: Integrating
MOBBO with other optimization techniques could
potentially enhance its performance. Future research
could explore hybrid models that combine the
strengths of MOBBO with other algorithms like ge-
netic algorithms or particle swarm optimization to
tackle specifc challenges or improve
convergence speed.

• Parameter Sensitivity Analysis: A detailed analysis of
the sensitivity of MOBBO to its control parameters
(e.g., population size and mutation rate) could be
conducted to optimize its performance further. Un-
derstanding how these parameters infuence the al-
gorithm’s behavior could lead to more efcient tuning
and application across various problem types.

• Application to Other Engineering Domains: While
MOBBO has been tested on truss structures, its ap-
plication in other engineering domains such as
aerospace, automotive, and civil engineering could be
explored. Investigating its efectiveness in diferent
felds would help generalize the algorithm’s utility.

• Real-World Case Studies: Applying MOBBO to real-
world optimization problems with practical con-
straints and objectives would provide insights into its
efectiveness in real engineering scenarios. Tis could
also involve collaboration with industry to validate the
algorithm’s performance in practical applications.

• Algorithmic Improvements: Further refnement of the
algorithm’s structure, such as improving its conver-
gence rate or enhancing its ability to escape local
optima, could be explored. Additionally, introducing

adaptive mechanisms that dynamically adjust pa-
rameters based on the optimization progress might
improve overall performance.

Despite its promising results, the MOBBO algorithm has
some limitations that should be acknowledged as compu-
tational cost, dependence on initial conditions and limited
benchmarking.
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